S02: Presentations - Population Health
Querying Electronic Health Data for Population Health Activities using PopMedNet™

Jessica Malenfant, MPH
Senior Health Informatics Analyst
Department of Population Medicine of Harvard Medical School & Harvard Pilgrim Health Care Institute

Twitter: #iHealth17
Disclosure

I and my partner have no relevant relationships with commercial interests to disclose.
Learning Objective

After the presentation, the participant should be better able to describe key challenges and features of implementing a query tool for distributed health data that is scalable for implementation in various settings.
Agenda

• Describe how PopMedNet (PMN) powers distributed research networks (DRN)
• Describe PMN software design & features
• Review Menu-Driven Query (MDQ) tool
 – Problem & use cases
 – Solution & Challenges
• Current status, opportunities & next steps
PopMedNet (PMN) Platform: Powering Distributed Data & Distributed Analysis

- Mature architecture using an approach shown to be accepted by health plans, clinical sites and other data holders
- Data partners maintain control over their own data
- Distribute code to partners for local execution
- Sites Provide results, not data, to the requestor
- Standardize the data using a common data model
- All activities audited and secure
 - Meets the privacy, proprietary, security, and research integrity demands of health plans and other data holders institutions’ IT departments
- Especially well suited for multi-site, multi-use networks
- Contribute to the Learning Health System by providing a socio-technical platform to support the people, process, technology contributing to knowledge generation
How it works: A Common Data Model

• Common Data Models (CDM) provide a mechanism for efficient sharing of health data for secondary uses – research and public health surveillance
• Agreed upon structure for capturing data
• Data owners map their source data (e.g. EHR, registry data, administrative claims data) into the CDM format including
 – Table names
 – Variable names
 – Value sets
 – Data formatting specifications
 – Database or data repository implementations
• Typically leverage health IT standard coding systems and vocabularies
Multiple Networks Sharing PMN Infrastructure

- Each organization can **participate in multiple networks**
- Each network **benefits from architecture and security improvements** while maintaining their unique governance and policies
- Networks **share** analytic tools, lessons learned, and system improvements
- Each network **controls its governance** and coordination
- **Funding from each network** is leveraged across initiatives to contribute to the core PMN platform
Multiple Networks Sharing PMN Infrastructure

- Health Plan 1
- Health Plan 2
- Health Plan 3
- Health Plan 4
- Health Plan 5
- Health Plan 6
- Health Plan 7
- Health Plan 8
- Health Plan 9
- Hospital 1
- Hospital 2
- Hospital 3
- Hospital 4
- Hospital 5
- Hospital 6
- Outpatient clinic 1
- Outpatient clinic 2
- Outpatient clinic 3
- Patient network 1
- Patient network 2
- Patient network 3
PMN Request Cycle: Menu Driven Query

1. Investigator creates and submits query to selected sites
2. Individual sites retrieve query
3. Sites review and run query directly against the CDM via the PMN DataMart Client
4. Sites review results
5. Individual site returns results via secure network
6. Requestor views results in PMN Portal

--Users have options to receive notifications throughout request cycle; various automation and approval workflows available
Problems Identified with the Initial MDQ Tool

• Legacy Query Composer: Developed for limited use resulting in scalability issues
 • Each query tool was hardcoded for use against a single CDM and RDBMS
 – The MDPHnet network’s data model and PostgreSQL
 – FDA’s Sentinel System Summary Table data model and MS Access database
 • All changes required manual and redundant hard-coding
 • Queryable terms could not be shared across networks (e.g. if 2 networks wanted to query race data, each query tool needed to be developed separately, even if the field names and value sets were the same)
 • Changes required the sites to download a new version of the PMN DataMart Client software in order to respond to a query
Challenges to Distributed Querying

• Heterogeneity of technical environments (e.g. Windows, Linux/Unix)
• Source data systems and refresh cycles populating the CDMs vary
• Database management system (i.e. RDBMS) flavors and versions that store the CDM data vary across sites
• Data holders have local IT policies and procedures for how and where data are stored and accessed

(of course these are just a select list of challenges that need to be considered)
Challenge: Develop a One Size Fits All MDQ Tool

- End users want a simple query tool interface and workflow
- Infrastructure should be re-usable and easily extensible and scalable, limiting CDM-specific coding
- Address the heterogeneity of technical environments across the large-scale distributed networks PMN supports
- Consider workflows for full request lifecycle including integration points with external systems
PMN Request Cycle: Menu Driven Query

Challenges to Consider:

Primary source data: refresh rates vary across sites, ETL processes may vary

CDM: Could be 1 of many approved CDM versions

RDBMS: Could be 1 of many supported database systems and versions of the RDBMS

Technical environment: DMC is Windows app, data may live in a Linux/Unix & involve manual processes to query data
One Size fits Most* MDQ Tool

*Committed to support the most common RDMBS versions used across PCORnet

Single MDQ Tool
MDQ Approach

• Leverage new, established technologies for query processing
 – .NET LINQ to Entities query
 – Microsoft Entity Framework
 – Most major database managers have providers for Entity Framework

• Develop mechanisms for queryable Terms (e.g. Race field) to be easily re-purposed for use against multiple data models and in multiple networks

• Re-design the query architecture to limit the requirements for sites to download new DataMart Client software for routine upgrades
1. PMN presents user with MDQ Interface

2. USER
 MDQ composed & submitted to data marts (terms and UI components can be re-purposed by other networks)

3. PMN
 PMN generates user input into JSON (JavaScript Object Notation) string

4. PMN
 Request JSON string parsed by PMN Model Adapter (adapter is specific to the CDM)

5. PMN
 Request compiled into LINQ Expression Tree (built in C#)**

6. EF
 EF sends LINQ to EF provider to Translate code to RDBMS-specific SQL code

7. Query executed Locally***

8. PMN
 Results presented to DMC analyst at site for review and approval

9. USER
 Run request. Sites can upload or reject results (DMC calls EF)

10. USER
 Retrieve results

*DMC is pre-configured at each site with connections to local database with CDM data

**LINQ expression available in the DMC for users to view prior to running request

***Actual SQL code run against database can be found in the RDBMS log, which needs to be configured prior to running a query
Use Case 1: Investigator Composes the MDQ Query:
Why don’t all people with high blood cholesterol and blood pressure get heart disease?

Use MDQ to find patients of interest
Terms are added to the PMN MDQ interface according to the data model. Terms can be re-purposed for other data models.

Note that these example queries are based on the PCORnet Common Data Model
Use Case 1: Investigator Composes the MDQ Query: Why don’t all people with high blood cholesterol and blood pressure get heart disease?

Criteria Group 2: AND patients have high cholesterol
Use Case 1: Investigator Composes the MDQ Query:
Why don’t all people with high blood cholesterol and blood pressure get heart disease?

Criteria Group 3: AND patients without heart failure
DataMart Administrator Receives the Query

DataMart Administrator Inbox – locally installed app at each site
DataMart Administrator Reviews Query Details

Administrator can review query input

Request JSON transmitted from the web portal to the DMC can also be viewed by users
Once request is run locally, the LINQ generated SQL is also available to the user.

This is the database agnostic query language that is then translated into a specific SQL flavor by the RDBMS service provider.
DataMart Administrator Uploads Results

...and send results back to the requestor if they choose to
Investigator Reviews Site-Specific Results on Web Portal

MDQ Results:
Patients with hypertension diagnosis with visits between 2000-2016
AND patients have high cholesterol ICD-9 diagnosis codes
AND patients without heart failure diagnosis codes
Current Status

- Multiple terms have been added to the MDQ tool for several fields including Race, Sex, Observation Period, Diagnosis and Procedure Codes, Height, Weight, Age, etc.
- The PCORnet data adapter has been updated to process queries with the new terms and stratification options.
- Testing has verified that ad hoc data models that share PCORnet CDM fields can use the MDQ out-of-the-box.
Current Status

• Investigating issues with SQL code matching request parameters
• Validation and performance testing is in progress to evaluate how complex queries behave
• Enhancing automation functionality
• Ability to expose the actual SQL to a user prior to running a query is under investigation. The request JSON and the LINQ code are currently available to end users but require manual steps to piece the query languages together, for example:
• Ability to expose the actual SQL to a user prior to running a query is under investigation. The request JSON and the LINQ code are currently available to end users but require manual steps to piece the query languages together, for example:

• Validation and performance testing is in progress to evaluate how complex queries behave.

```sql
-- PrimaryObservationStart: '10/15/2013 12:00:00 AM' (Type = DateTime2, IsNullable = false)
-- PrimaryObservationEnd: '10/14/2014 12:00:00 AM' (Type = DateTime2)
-- CriteriaOneCodeType: '09' (Type = String, Size = 4000)
-- CriteriaOneMinimumAge: '65' (Type = Int32, IsNullable = false)

SELECT 1 AS [C1],
  [GroupBy1].[K1] AS [SEX],
  [GroupBy1].[K2] AS [HISPANIC],
  [GroupBy1].[K3] AS [RACE],
  [GroupBy1].[A1] AS [C2]
FROM (
  SELECT [Extent1].[SEX] AS [K1],
    [Extent1].[HISPANIC] AS [K2],
    [Extent1].[RACE] AS [K3],
    COUNT(1) AS [A1]
  FROM [dbo].[DEMOGRAPHIC] AS [Extent1]
  WHERE
    -- where the patient has an encounter between the primary criteria dates
    EXISTS (SELECT 1 AS [C1]
      FROM [dbo].[ENCOUNTER] AS [Extent2]
      WHERE (([Extent1].[PATID] = [Extent2].[PATID]) AND ([Extent2].[ADMIT_DATE] >= @PrimaryObservationStart) AND ([Extent2].[ADMIT_DATE] <= @PrimaryObservationEnd))
  )
  AND (
    -- from diagnosis where the codes match the primary criteria code term values and code type, and the diagnosis has an encounter associated between the primary observation dates
    EXISTS (SELECT 1 AS [C1]
      FROM [dbo].[DIAGNOSIS] AS [Extent3]
      LEFT OUTER JOIN [dbo].[ENCOUNTER] AS [Extent4] ON [Extent3].[ENCOUNTERID] = [Extent4].[ENCOUNTERID]
      WHERE (([Extent3].[PATID] = [Extent3].[PATID]) AND ([Extent4].[ADMIT_DATE] >= @PrimaryObservationStart) AND ([Extent4].[ADMIT_DATE] <= @PrimaryObservationEnd))
  )
)
Current Status

• Investigating issues with SQL code matching request parameters
• Validation and performance testing is in progress to evaluate how complex queries behave
• Ability to expose the actual SQL to a user prior to running a query is under investigation. The request JSON and the LINQ code are currently available to end users but require manual steps to piece the query languages together, for example:
The PopMedNet™ (PMN) platform was enhanced to enable users to create and send custom data queries to multiple data sources using different database management systems (e.g. SQL server and Oracle). In what way does this new functionality facilitate a sharable, scalable query infrastructure?

A. PMN was extended to allow a single query to target multiple data models at once.
B. The tool was purpose-built to separate the front and back-end components to enable projects that use different data models to more easily leverage existing work (e.g. Race Term) to target additional data models.
C. The system now allows for users to see which database management system is used at each site.
D. Menu-driven queries can be used to generate patient lists that can be shared with the investigator who submitted a query.
Answer

A. PMN was extended to allow a single query to target multiple data models at once.

B. The tool was purpose-built to separate the front and back-end components to enable projects that use different data models to more easily leverage existing work (e.g. Race Term) to target additional data models.

C. The system now allows for users to see which database management system is used at each site.

D. Menu-driven queries can be used to generate patient lists that can be shared with the investigator who submitted a query.

Explanation: This project focuses on developing a new approach to Menu-Driven-Queries (MDQ) in PMN that is scalable, extensible and enables efficient querying within a diverse health data network. The legacy query composer in PMN built for a single network was not suitable for use in the diverse ecosystem because was not scalable and much of it was hardcoded for a specific RDBMS and could not easily be repurposed. With advancements in technology, the PMN platform was substantially enhanced to introduce the Microsoft Entity Framework and custom workflow engines to produce the new MDQ tools that enable querying across RDBMS.